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NOTATION CONVENTION

Vector

Quadratic form
Transpose

Kronecker delta

(d x d) Identity matrix

Set of all constant directions

-Positive semi-definite initial condition of the riccati

equation (II-3)

Solu;ion to the riccati equation (II-3)

Span of {cp- l,g, cees cp-ig}

The smallest i such that R = R™, i = m
Direction of implication

Almost surely

See Lemma I

See Theorem N

A, a square matrix, positive semi-definite

Inclusion

.Belongs to

Refer_ence
Expectation

Penrose pseudo inverse
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CHAPTER 1

INTRODU CTION

The appearance of riccati fype equations in the solution of
optimal linear quadratic control probiems and in optimai linear
ﬁltering problems with gaussian randomness has been noted and
studied by many researchers. In such problems the matrix of
quadratic fofm for performance index under optimal control, and
the optimal error covariance matrix, in the control and filtering
situations respectively satisfy nonlinear difference equations in
discrete time, nqnlinear differéntial equat;ions in continuous time
’ whichvare of the 1;iccéti-type. In references [5], [9]-[12], these
equations arelstudied and their importance recognized in the mech-
anization of the op'timalkfeedback control and the optirhal filter,
rles'pectively, in the control and filtering contexts, For thé parfi-
culé.r élass of pro’blems. coi’responding to the cost-f'ree-ciontrol |
quadr#ticvregulator problem, in which the cost is not explicitly
dependent on control, and the filtering problem in which the observa-
tiéﬁs contain additi‘ve correlated noise, commonly called colored
noise, it has been noted that it is possible to reducé the computational
complexity of the optimal system; that is, reduction in the dimension
of the optimal controller or filter. The discrete time cost-free-
control quadratic regulator problem is discussed in reference [ 12] .
The formulation and solution to the discrete time filtering problem
with additive correlated observation noiée is presented in reference
[9]. In [ 9] the states of the system being observed are totally

augmented by the dynamic structure of the observation noise.



Efforts to reduce the computational complexity of these dual

control and filtering problems fa11 into two groups; the contmuous
time and the discrete time cases, In the former case the three note-
worthy attempts are found in references [ 2] ,[3] and [ 9]. In (2] a.l.
continuous analog of the model in [ 9] is assumed with the states of
the observed system 'being augmented by the correlated observation
néise states, A data-differentiating algorithm is applied to the
augmented model, The algorithm comprises a set of sufficient con- -
ditions for reductibn in filter dimension. In [3] and [4] a parti-
cular ;:ofreléxted noise model is assumed and a data diffex;'encixx-g '
écheme is‘ employed which avoids the need to augméﬁt the statés of
“the observed system, A common aspéét of these two avpproac‘:l_les is
the céhv_éféion of Ifhe' given system into a different, but equi.\}a'i_ent :

'foi-m,'- which contains white obsex_-vation noise, and for which the optimal

filter is derivable. The discrete time case was first consideréd_in
L6] . A‘hoth"er- effoft -i‘s. made in reference' [‘8] , which is a discrete
time version of (2] . Both (6] and [ 8] reduce the size of the ‘toté-lly
aﬁén‘xentéd model by the‘ number of observations , the .‘ra;.tiorixal'_é Being -
that the totally augmented model prov.id.es perfect ‘tﬁeaéufements ,
hence estimates in th'eée di’réc‘tions are redundant. In add1t10n [ 10]
prov1des a suff1c1ent cond1t10n for further reductwn.

Undertaken- in this deportiisian exammanonf'oflth'e :fié‘ca'.ti:
Vequation ar{sing from a linear discrete autonomoﬁs cost-free-éonfrol :
quadrat1c regulator opt1ma1 control problem with a scalar mput or. |
equivalently by dual1ty (see [9] {10] and [ 5]) that occurring in ' o

optimal filtering of a linear, discrete time autonomous, totally




augmented system driven by a white gaussian noise sequehce,
observed by a noiseless scalar output. The problem is defined

as a search for constant directions of the riccati equation which are

independent of the initial condition.” The constant directions are
those directions in which the ‘rficcati equation reaches >equi1ib-
rium in finite time.. It is shown that the set of constant directions
comprise a vector space. A set of linearly independent constant
directions of dimension K, means a like reduction in the dimension
of the noniinear riccati equation apd the elimination of constant
singula‘rities after a finite time intervai. Necessary and sufficient
éoﬁditions fof theexistence of 'such ;onstant diréctions are determined,
These conditions comprise linear relations between the moments of
the linear system. The moments are a structural \fe'ature of the
;ystem.

In the control problem a consequence of the concept ''constant
directions" is necessary and sufficient ;onditions that the,dead beat
control [13] be optimal for a given initial system state. For the
case of filtering, the optimal one-step predictor is shown to consist
of two component parts; one, corresponding to the set of consté.nt
directions, being a delay line with"constan;c tap gains, and the other
having the commonly known dynamic form utilizing the complete set
of past outputs in general,

The attack is mounted via consideration of the cost-free-
control quadratic regulator problem, While this is not neéessary
it provides a convenient framework in which intuition is a helpful guide.
The results developed for the control case are then applied to optimal

filtering by reason of duality.



Thé results indicate that the discrete time data differencing-
techniques are ﬁot necessary té accomplish reduction in computational
ciomplexity aﬁd in actual fact do not achieve the maximum possible.

It is worthwhile to note that the discrete time cost-free-
control quadratic regulator optimal control problem is Well’posgd,
whereas the corresponding continuous time problem is not necessarily
so. As is shown in the sequel, the concept of a constant direction of
the riccati equation corresponds to an optimal trajectory passing through
the origin at 1.:he termination of the interval of controllability (see [13]).
The analogous behavior ip the case of continuous time is instant-aneous.
removal fo the origin. A condition of singularity!

This report is partitioned as follows: Chapter Iis.an
introduction. Chapter II is a detailed statement and description of the
p;oblem. Chapter III contains the derivation of preiiminary results.
Chapter IV consists of the main results. Chai)ter V is devoted to
further implications of the main results. Chapter VI is the application
of the results to optimal linear filtering. Chapter VII is a comparison

of the results obtained here with those obtained by data-differencing.



CHAPTER I

STATEMENT OF THE PROBLEM

The cost-free-control quadratic regulator problem (see [14], Chapter

A,

13, for more information on the discrete time optimal control problem).

Consider a -discrete-time optimal control problem for an autonomous

linear system with a scalar input described as follows:

a) The motion of the system is specified by
§n+1=¢’§n+gqn ] n=1:2:---:N (11‘1)

= C

X
~o
where,

x 1is column vector of dimension d
-n

¢ a nonsingular (d X d) matrix

g 2 (d x 1) matrix

and
94 a scalar, the control variable.

b) A cost not ex‘plicitl‘y depende:nt‘ on th’é control variable will be

assigned to each trajectory on the interval [0, NJ by the scalar functional

N N-1 R . |
VIN,T;6,0Q0) = I llx Mgy + Uxllz (I1-2)



where 'Ql: denotes the control sequence q, i=0,...,N-1, and

where

H isa (d x r:) matrix d 2 r, and

T' isa (d x d) positive-semidefinite (2 0) matrix.

The optimal cost is given as

_ N 2
VON,T3c;0) = min  V(NTie,0:)) = [l
S ' q. : o N
. ) ' 1 .
" 0sis N-1
where
P_=¢'P ,~-¢- @’P glg'P 'g)#g'P o+ HH (1I-3)
N TN-1T N-1°'® " N-1 N-1
Py =T

and # d.;eno_tes‘ the Penrose pseudo inverse (see [127). Denote the
solution to (I1-3) by N(n,T).

-Note that the autonomous ﬁature of the system implies that the cosf
lS the 'sar‘ne._ on aﬁ’y time int_er\_ral of the same duration as [0, N1, This
, e.na.ble‘s the, fixfm_gv'vof t:ﬁg‘a_intital time, hvere cv.onvenliently taken as zero,
>vwhvi1e the final t'irﬁe_ N is moved ahead as obtimization on intervals of
vincrea>sring len‘gth'ére, considered. This accounts for the ''forward"
_‘ rvicca,t’vi‘equa‘tion Q(I_I-3), rather _thanv the usually encountered "'backward”'

. riccati equations in the optimal control setup.




B. The correlated noise problem (see reference [9]). Consider a

discrete-time optimal filtering problem for an autonomous system with

a scalar output described as follows:

a) The motion of the system is specified by

| i} .
X4 T VE, HOL,

(II- 4)

where,

is a d-dimensional column matrix,

is a (d X d) nonsingular matrix,

Qe-éx

isa (d X r) matrix, d 2 r,

is a vector zero-mean gaussian white noise sequence,

AC

independent of x_ with covariance Eu,u’= 51 .
n —i-j ijr

is a zero-mean gaussian random variable independent

Io

. . 14
of u , with covariance Ecc = T,
A <&

The scalar output of the system is given by

(1I-5)

where

h isa (1 x d) matrix.

(II-4) and (II-5) are the dynamic equation for the so-called totally augmented

system.



b) " As is well known ([9], [11]) a random variable g‘n

2 .
- for all vectors A\, is given

+1/n

L . [y A
~which minimizes EL_)_\_ (§n+1 - §n+1/n)—’

by the gaussian random variable which is the éxpected value of X 41

~ given the observed sequence, z, 0%i<n. This random variable is

v

generated by the difference equation

. . , . . o
Entl/n - PEn/n-1 + P h'(hP h)(Z - hin/n-l) a.s. .(II-A6) |

-# denoting the Penrose-pseudo inverse, and where Pn’ the error co-
variance function

) = P

E(}—c'n-x )(ﬁn-in/n-l n

=n/n-1

satisfies the nonlinear riccati difference equation

A o . ' ' ‘) # ’ )
-Pti+1 = q;Pn\D - \yPnh (thh) th\b + GG . |
(II- 7)
=T
P0
C. 'The optimal control and 0ptirh-al filtering pfoblems just outlined
- 'axje duals of one another under the mappings

h- 4——-—’ g'
G —— H' , (II-8)

o — '

-8-



An immediate result under this duality transformation is that the ricéati
equations (II-3) and (II-7) map into each other. See references (51, T9]
and Afll] for more information on duality.

As is clear, the riccati equatior; is central to the solution of optimal
linear control and linear filtering broblems. An important concern in
the implementation of the optimal filter and optimal controller is the
dynamic dimension of the riccati equation, i.e., the number of indepen-
dent varying directions. It i; shown in 6] and [ 8] that for the colored
noise problem the iterétion. forv Pn’ which is a (d x a) matrix., can es-
sentially be reduced to iterations of matrices of size (-(d -s) x (d-s)),
s being the dimension of the observation in the filtering case, that of
the control in the control case. The problem to be examined in the sequel
will be restricted to the case of s = 1, although some of the preliminary
lemmas which are proved are in actuality not so constrained. The prob-
lem to be confronted can be phrased as follows:

"To find the set of all linearly independent directions C

for which the vector H(n,l’)g,s € C, reach’es an .equilib‘-

rium point in finite time, for all initial conditions T, whgre

I(n,T') is the solution of equation (II-3)."



CHAPTER IIT-
PRELIMINARY RESULTS

.This-chapter is a‘cbmpilation of definitions, theorems and
lemmas needed for the derivation of the main results which are sum-
marized in the chapter following. Definition A formulates the concept
of a constant directioh of the riccati equation. Theorem B reveals its
physical meaning. The remainder of the results of this section furthef
characterize and describe the set of constant directions. | “

The control system and the corresponding riccati equation to
which reference will be made in this section are described by equations

(11-1), (11-2), and (11-3).

DEFINITION 1: ¢ 1is a constant direction of equation (I1-3) if

there exists some finite N such that for all n> N and each Ty >0,

2 2
each T, > 0, |[cf| = ||c]]| . Let the set of all
' n(n, ry) n(n, Tp)

constant directions of (II-3) be denoted by C.

Note the T -independence of C.

THEOREM A:  ceC iff 3IN 3Vnm>N and for each 1y >0,
cach 1520, llelly(n, 1) = l1el iy, )

PROOF: If : take n = m. Converse]y if C.sC, then

el g, 1, - el ,,HH)=|| Il (m1,0) © ey )

and the theorem follows inductively.
-10-



Theorem A provides an alternate definition of C.

DEFINITION 2‘ cely, N f1n1te, if for ¥.n >N, eachTy >0,
ea'Ch F > 0, ”C” ) = HC”H(n, T ) |

Note that by definitions 1 and 2, CNc: C, that Cic: Cj' i<
and that if ¢ €C, then ceC, for some finite k> 1,

Remark: In the sequel the statement "c can be taken optimally

) *

to the origin by (II-1), (II-2) on [O,N] for T =T " means that
for system (II-1), (II-2) with terminal cost r* there exists a set of
optimal controls g;, i=0,...,N-1 and a corresponding optimal trajec-
tory ¢, Xy, Xp,....Xy wWhere xy = 0. System (II-1), (II-2) will
henceforth be denoted by the symbol *,

DEFINITION 3: Let é_et(éﬂ, Xy le) denote the trajectory of*

on [k, 2] Xys XpqqpoecosXy s generated by the control sequence

Gy -28,_1» Which is denoted by q.”.

THEOREM B: ceCy for some finite N iff c can be taken
optimally to the origin by * on [O,N] for T = 0,(i.e., XN-1° ¢']g a,s0me a).

The following two lemmas will be used in the proof of Theorem B.

Lenma_a: VO(N, 05 ¢, 0) <V%(n, T5c0) yn>N,yr>0 and
each c. -
Proof: Let Qon denote the control sequence Qgoe+-+20p_1" Let

N denote the first N controls. Then for each T > 0, each ¢ and

QO
each n> N  V(N, 05 ¢, 05 Q") <V(n, r5 ¢, 05 Q") by (II-2).
Then VO(N, 05 ¢, 0) < V(n, 5 ¢, 05 Q") forany Q) . The result

follows. | .
. -11_ €



Lemma b: If c can be taken optima11y to the origin by * ‘
for =0 on [O0,N] along trajectory t(o,c, QON), then ¢ can be
taken optimally to the origin along the same trajectory for each I > 0

~on [o,N] and ceCy.

Proof: For T =T arbitrary, x e t(o, ¢, QON) on. [0,Nj

N-] N-] 2 . 2
Y . = =
VN, 05 ¢,0) = ) ! Hi,-IIH,H ¥ ll_zNIIf <

2
Hxl1°, =
i=0 . H'H i=0

vO(N, I c,0) by (II-2) and lemma a. Hence t(o, c, QON) is an

optimal trajectory for T on [0,N] and equality holds.

N

For each n >N Tlet Qon be the control sequence Qo

augmented by q; = 0 N< j<n-1. Then t(o, ¢, Qon) is a

continuation of t(o, c, QON) for which X; = 0, Vi N+l <j<n.

For T = T arbitrary, x ¢t(o, ¢, Qon) on [0,n] .
N-1 2 n-1 2 2 -
VO, 03¢, 00 = T Ikl = T Tk, x H1D < vo(n,Tse,0)
i=o HH =0 H'H T

by (II-2) and lemma a. Hence t(o, c, QO") is an optimal trajectory on

[0,n] and equality holds. By Theorum A ceCy -

Proof of Theorem B: If: by Lemma b. Converse]y; suppose

ceCy for some N finite. Then by Definition 1

VO(N,0; ¢,0) = VO(N,r5 ¢,0) for each r > 0. Let r, =0 and
. ' N N
F? > 0 arb1trary. Let x ¢ t](ﬁﬁ, c, QO (1)) aﬁd .5f Etg(!ﬁ’E;Qo (2))
denote rgspective]y the optimal trajectories on [O,N] for Iy and I'y.

Then

N-1 2
RIS
& H

2
21|
1=0 T

R
= X. . + X
' =0 ' H'H N )

-12-



) o NaT o, 2
Assume xy“ = o . Then (N,05 c,0) > } lléﬁ llH'H contradicting
: i=0 ;

optimality for r,. Hence 5N2 =0 and ty(o,c, QON (2)) s an

optimal trajectory for 'r] =0 on [O,N]':

COROLLARY B.1: - c eCy for some N finite iff 3 a trajectory

of *, x, et(o,c, QON) on [0,N] which is optimal for each. 1 > 0.
Proof: by_Theorem_B and Lemma b.
The following theorem shows.that C :isvnot_gmpéy.
THEOREM C: ¢™'geC; and forV. n>1 m(n,-)s"'g = H'He™'g .

Proof: 1(n,*)o 'g = H'He™'g follows from (11-3) for ¥ n > 1.
2 .
Hence V%(n,-; c,0) = ||¢'lg|[H-H ,¥n> 1, yr >0 for *,

Theorem C contains the result that not only does the quadratic
> 2
-1
form ||¢ glln(n .) @assume a constant value for ¥n > 1, ¥r > 0 but
. . L s . -1
that the riccati equation II-3 is constant in direction ¢ g for

¥ n>1, ¥r > 0. The next theorem generalizes this result..

THEOREM D: ¢ cC, for some N finite iff fory n, m » N

each ry > 0, each T, 3 0 “n(n,rq) ¢ = n(m,rz) c .

Proof: If: by Theorem A. Conversely by Lemma a
vO(k,r; ¢,0) > V°(i, 03 ¢, o) ¥ k > i, each r » 0, each ¢c. This implies
by (11-2) that  n(k,r) - m(i,0) > 0. If ceCy then

2 : , _ ,
Hellngn,ry) - nn,0) = Hellnm,ry) < nn,o) =0 ¥ mamz i

Let zi(r) = n(i,r) - n(N,0) i > N. Zi(') > 0 implies that Ei(')

1 L
can be factored as £;(+) = 2% (+) 2i2(°)-
-13-



2
Therefore ||c||.- = |lcl]. ¢ =0 gives
Z,(rq) En(Tp) ,

% %
r, (ry) ¢ =z (;2) c=0. |

Therefore - A
- 2, (1) e=12, (r))e=0 yn, m>N

and the Eesu]t follows.

COROLLARY D.1: C is a linear vector space.

Proof: By Theorem D.
Theorems B and D will be seen to play the principal roles in the

" analysis that follows.

DEFINITION 4: The ith

moment of system (II-1) is defined to be -
H ¢ig = Uy, i an integer. |

Remark: Moments are invariant properties of a system in that
“they are indépendent of the coordinate system in which the system is
represented. | |

Remark: n(n,r)¢'lg =Hu_,.

Let R = span {¢flg,...,¢—1g} .

-m

.Let m <d be the largest positive integer such that {¢'lg,...¢ gl

are linearly independent.

Remark: Rm is the spdce of completely controllable states

(see [13] ).
Lemma c: The vector :¢"g e R" yi, i=0,+1,....
Prqof? see [7].

COROLLARY ¢.1: Every consecutive "string" of vectors

-14-




(6lgy.. et TN

Vi,'i =0, +1,..., are linearly independent.
Proof: Obvious.
Lemma d: CcRm

Proof: If ceC then by Theorem B ¢ is a completely controll-

able state (see [13] ). Hence Cc,Rm.

Lemma e: Ce Rk, ck k-1

- cannot be taken to the origin in less
than -k steps, i.e., on [O,i] » 0 <1 <k,
k

Proof: ¢ = J

+"'g a;, a, ¥ 0, From (I1I-2)
1 : ) ‘

.I .

i-k k-1 i-1

X: = ¢» g ak + ¢1- ak-1+ oo t o g a, + g q_i._1 + ¢g Q.2 +...

-1
+9'"gq, .

By Corollary c.1 and since a ¥ 0 X; ¥o0, fori= O0,...,k=1 .

Lemma f: Let ceCy for some N finite. Let xe t(_q,_c__,QoN)
be an op_timg] trajectory of * on [O,N] for 1 =10 (see Theorem B).
Then  x; e Cy_; Vi, 0 <i<N-1., |
~Proof: By the principle of optimality (see [1]) the trajectories
X. € t(Q:ii’ QiN) on [i,N] yi, 0< i <N-1 areoptimal trajectories
of * for r = Q. The lemma follows by Thegorem B as * is an autonomous

system.

Lemma g: Let :EN‘: CN, s Oy for some N > 0, Let

| X, e t{o, Sy QON) be an optima] trajectory of * on [O,N] for T =0

(see Theorem B). Then x, % o each j, 0<j<N.

-15-



Proof: Suppose 3xJ‘=9_, 0<j<N and xi\g,031'<j-.

Then the trajectory X et(o, ¢ Q ) where )gk for 0<k<j .,
Xk=9- for J<kiN’ ak=qk for 0_<_k13-1 and c';k=0,
j <k <N-1 is also optimal on [O,Nj for T = 0. Since X ¥ 0,

X1 = ¢"'ga  for some =0 by (II-1). By Theorem C Xi1® C]
Assume that ij-zecz each &, 1 <& <j. However, this implies
Xg = gNeCJ., where j < N. Contradictioh : Hencé 1 some k>1,
',j-k'>_0'_ 3 J(k])eckl’xgkk\czlakec forsome2>.k.
lety =X, ., W=X5 (q)- Then by (I1-1) y = ¢ w—cb g 8 for
some AB. By theorems C and D for ¥n > g, “each T > 0,

** (n,-)y = ¢ 't(n-1, W - ¢ 'm(n- 1,-)g(g n(n-1,- )g)#g m(n-T,+)w + H' Hy .
Two cases:

(1) g'm(n-1,+)w = 0, ¥n > k. This means that ye C, since
the right side of ** is constant independent of r for ¥n > k.

Contradiction ! Therefore 53. ¥ 0, each j, 0 < j<N.

(2) g'n(n-1,-)w=b% 0 V¥Yn>k. Then ** implies that

¢,'n(n—1,-)g(g'n(n-1,u)g)#b is constant for ¥ n > ¢ independent of T.

Therefore bz(g'n(n-l,-)g)# is constant Vn > 2, independent of I , i.e., g

ge Cﬂ_1 . Assume g >d otherwise the contradiction is immediate

by Lemma e and Theorem B. By Theorem D

m(n,+)g = ¢'1(n-1,-) 6 g - ¢'m(n-1,-)g(g'n(n-1,-)g)*g'n(n-1,+)¢g + H'H g.

The term on the left and the two rightmost terms on the right are constant
for ¥n > g, independent of . Hence ¢ge C’L_1 . It follows inductively
that ¢'q eC,, » ¥i>0. Butbylemma c and Corollary D.1 yeC

" Contradiction ! Hence X5 ¥0 Yj, 0<3j<N.

-16-




The next theorem and its corollaries demonstrate two central
properties of C: C is completely characterized by the largest k <m
such ch: C : the riccati equation (II-3) assumes r-independent values

in constant directions after a transient period of duration < m.

) . )
THEOREM E: Let ceR , ckRK™! for some Kk <m; then ceC
iff Co=R' =1,k
Proof: If: by Corollary D.1 and Definition 2. Conversely,

suppose ¢c eC, then ceCy where N = min i 3 ceC;.

By Theorem B and Lemma e N > k and 3 exists an optimal trajectory

of * on [0O,N], i.e., x e t(o, ¢, QON) for T = 0. By Lemma g

X; ¥ 0, 0<j<N. Hence by (II-1) Xy = 0= Xy ot 9 ay_1s Gy, X0
. 1 '

and XNoj = -¢1g IN-y " ceemd 9 Oy 1< i<N. Bylemaf

N-i
linearly independent vectors. Therefore, for each 2 , 1 <2

XNoi ECi 1< i <N. aN-T X 0 implies that x 1 <1<k are

< k the
vectors Xy _s 1 <1< span RY and by Corollary D.1 R c ¢

By Theorem B and Lemma e RY = 92'

COROLLARY E.1: Let ceR¥, ck RK™! for some k <m. If cecC

k

then R"C Ck.

Proof: By Theorem E.

L

COROLLARY E.2: C = C, =R for some £ < m.

Proof: By Theorem C and Lemma d RlC:CC:Rm. Let % be the
largest k <m 3 R*c C. Assume ceC, Ck RY. Hence by Lemma d ce R

some h, & < h <m. By Corollary E.1 RhCZC. Contradiction !

Y and C=¢C by Theorem E.

Therefore C =R .
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The sequence of theorems F - I reveal further properties of the
riccati equation (II-3) and provide results equivalent to Theorem E.

These will be used to derive an algorithm for determing the size of C.

THEOREM F: Let ceRX, csR<™! some k <m. If ceC, then

g'm(n,*)¢"'g =0, ¥n>i eachi, 1<i<k-l.
Proof: By Theorem E  C. =R Ty . 1,...,k. Therefore ¢ 'ge Css
1<i<k. Let 2<i+ 1<k, then for n > i+l by Theorem D

g = 41,4067l - 6" nln1,4)9(g'n(n=1,4)9)#g n(n-1,-)67 g

+ e~ U41) g,
If g'n(n-],-)¢'1 g = b; % 0 constant Yn-1 > i, r-independent, then
g eCi. By Theorem B, Cord]]ary c.l and Lemma e, if geC, g \Cj‘for

j <m. But i<kz<m Contradiction : Hence b, =0, Vi 1<i<k-l.

n
THEOREM G:  If g'm(n,*)¢"'g =0, ¥n>4i 1<i<k-1, then
y i-1 .,
mn,e) 07 9= J o0 H u_ Ly ¥nxd, Teoick
| i%0 J
Proof: By Theorem C n(n,* )¢ 'g = H'u_ . Assume the result

1
holds for  &- 1< k. Then for 2 < k, by (II-3)

m(n,-)e™% = ¢'m(n-1,r)e" & g + H'H 474
-1 .
- g
L T )
. -1 . .
THEOREM H: If m(n,+)¢" g = [ ¢ H' U_(j_5)> ¥ N 2T
j=o |

i=1,..,k, then C. =R .

Proof: by Corollary D.1
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Define for 2 < k <m the vector

Note that if W' =0 then W1 =0.

THEOREM I: WK1 = 0, 2 <k <m, iff »n(n,-)¢"i g

o !
J H' v . .. .
. ¢ ua(iej) n>i, each i 1 <i 5_k.=

Proof: If: by Theorems E - H since for n > i g'H(n,')¢'ig
i-l k-1
= jzo uj u'(i'j),= 0, each i 1 <1 <k-1; i.e., W =0 .
Conversely, by Theorem C for k = 2 g'n(n,-)qf1 g=u

0
by (II-3) n(n,-)¢'2 g = ¢ H'H ¢'] g+ H'H ¢'2‘g for ¥Y¥n>2.

uy,=0 and

Assume the result is true for a j < k. Then for j+ 1 < k by (II-3)

- =1
-(j+1) W3 gt
‘1(n,T)¢ (5 g= ¢ ) o H u_,,
2=0 (J-*Q') .
ot(n-1,r)g(g 'm(n~1 # JE]u " + H'u
SRR IR R L AN LUNINY
- 2y - : Vi
= % 6" H u_ys.q. ¥ n>3j+1 since W =0
220 (3+41-2) |

and the result follows.

Remark: Theorems E - I are equivalent.
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CHAPTER IV
MAIN RESULTS

By Corollary E.2 C = R* for some & < m. The next theorem

which is the main result, provides a rule for calculating the value of g.

THEOREM J : For 2 <k<m Wl=0 Wxo iff c=r"
For k=m W' =09 iff c'=R"
Proof: If C = Rk, k <m then by theorems E - I UL 0.

For k <m take & arbitrary k < 2 < m. Suppose Wt is o . Then by

theorems I and H R*cC. Contradiction ! Hence w“#g each ¢

k < 2 <m. Conversely, if TLLa 0, k <m then by theorems I and H .

k

R'cC. Fork=m C=R" by Lemma d. If k <m and wk9fg assume

3 ceC, E}\Rk. By Lemma d, geR'Q' for some 2 , k < g <m, Cx RE"L

But theorems E - I imply that Wttt - 0, i.e., wk = o . Contradiction !

Hence C = RK .
THEOREM K : If ceC then ¢ = E ¢'ig a;, a %0 some
k<m, ceC  and = |
H(n-)c=15§i>-31¢j'Hu a ¥Yn>k
> 7= =1 §=0 -(i-j) i -

Proof: Theorems E - I.
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CHAPTER V
- FURTHER IMPLICATIONS OF THE RESULTS

The following théorem describes when the dead-beat control
(i.e., the control which minimizes the time to reach the origin) is
optimal (see [13] ).
k .
THEOREM L: Let c= J ¢ gay, a %0, k<m ceC iff
¢ can be taken thiha]]y to t;Z]origjn by * for ¥ T > 0 by the dead-

beat control q; = a 0 <i<k-1 on [0,k] .

i+l
Proof: It follows by Theorem B. Conversely, if ceC  ce Ck,

gk-ck_] by Theorem E. Let x et(o, ¢, on), be an optimal trajectory

which takes g;to o on [0,k]for. r=0 (hence by Lemma b for ¥ T > 0).

Xy = g(ak + qk_]) + ¢g(ak_] + qk-2) 4}-...+¢k']g(a.l + qo). By Corollary c.1

X = 0 iff 9; = a4 » 1 =0,..., k-1.

Since a constant direction of the riccati equation (II-3) is
r-independent, it is clear by Theorem D that a constant direction is an
asymptotically stable equilibrium direction. - Also, by Corollary E.2 this
equilibrium direction is reached in m or less steps. Once the riccati
equation (I1-3) reacﬁes the equilibrium point in a cbnstant direction,
any further ca]tu]ation of the vé]ue of Pn in that direction is re-

dundant. This motivates the following discussion.

DEFINITION 5: Let C = Rz_. Then the dynamic rank of the

riccati equation (II-3) = d-2 , where d = system dimension.
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Consider that the system (II-1) is in the coordinate system
A= [¢f g,...,v¢"lg, L] = [94’;"’éd] , where A is a nonsingular dxd
matrix, i.e., the ’gi, i= 1,.;.,d, are a set of basis vectors, and d-g
is the dynamic rank of the corresponding riccati equation. It is clear
from Theorem D and Corollary E;2 that after a transitory period of
length 2, 7(n,r) can be partitioned as

A B

n(n,r) = s N > 2 where (v-1)

B" D(n,r)

D(n,r) is a(d-2)x(d-g¢) matrix, and A and B are constant matrices
independent of T . From equation (II-3) it follows that D(n,z) can
be computed recursively in terms of itself, and the constant matrices A
and B, by'means of a (d-2)x(d-2) matrix riccati type equation. Note
that all r-independent constant singularities are eliminated from the
iteration by this reduction since they are a subset of the set of

constant directions.

It is of interest to know when the submatrix Dn is nonsingular.
The following theorem provides a sufficient condition for Dn to be

nonsingular.
THEOREM M: If r>0 then D(n,r) >0 V n >0,

*
Proof: Suppose 3a(d-2) vector ¢, D(n,r) ¢* =0 for some n.

Let ¢ be the d vector ¢' = [0,...,0,c*'] . Then for system * with

o (. r*: - 2 e
r=r >0 v (n’r b4 E’ 0) - Ilglln(n’r*) - l].(.:_ ll D(n’r*)' Let
_ : . *
gaet(gn, c, Qon) ‘be an optimal trajectory of * on [0,n] for T .
n-1 2
Hence V°(n,r™; ¢, o) = 2 ||§i|| gyt , = 0. Therefore
. 1=0 T
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X, =0 and H gq =0 0 s 1isn-1, But this trajectory is obviously

optimal on [0,n] for T =0, Then by Theorem B ~ ce C, where
: [} o
c= ] e a;. Contradiction ! i.e., D(n,r) >0 V¥ n>0.
i=g4l TV .
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CHAPTER VI

APPLICATION TO OPTIMAL LINEAR FILTERING

Consider the system (II-4) —:(11-7).under the mapping (11-8) .
This is the dual of the optimal control problem * studied in the previous
sections. The results obtained for constant directions of equation (II-3)

apply by duality to equation (II-7). For example: define vy = hw1 G,
th |

the i moment of (II-4), (II-5). Let C denote the set of constant
directions of (II-7). Let SK = span of {y"'h',..., w'k h'y . Let
Pk-2 . : i
o et
Vo Va2 t U v
| % v -

The dual of Theorem J is

THEOREM N: For 2 <k <m Y ' =9, Y %o iff C=S°.

For k=m Y"1 =0 iff C=3".

Proof: By duality.

The reduction in dynamic fank of the ricéati equation (II-3)
discussed in the previous chapter applies equally to the riccati equa-
tion (II-7) by reason of the duality map (II-8).

It will now be demonstrated that the dual of an optimal

trajectory starting at ¢ and arriving at the origin in finite time

period [0,k] for r =0 is the filter direction c for which the '
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best one-step predictor estimate is a constant linear combination of the
Tast k outputs for n > k-1. Note that in the proof below the estimate

equations hold almost surely.

THEOREM 0:  Let [ h g a; (a row vector), a, ¥ o,
k <m.. A eC if and only 1f
k

Mt Xpryn T iZ] 4 Zn-i+

Py

1 5. all n > k-1.

( - denotes the vector inner product.) -

Proof: If X eC by (II-6), Theorem F and duality

~ o, ' # . .
M Xa1/n® A w;n/n_]+a]hn(n,r)h (hn(n,r)h ") (Zn-hén/n_]), for n > k-1,

Assume hn{n,T)h' > 0, then

M Eim = 4ty - hag)e x

3 Zn * Al Xnypoys Where Ay =i§ A4qh v

If hn(n,r)h' = 0 then

h x

M Xnpiyn = A Ry T Xn/m-1 F 21" Zn/n-

=4y 7, ¥ A én/n-l

By the dual of Theorem E, AqE C and it'can be shown that the desired

jmplication follows inductively. ’
Conversely assume that Ay - —n+1/n =iZ] a5 Zp_q47
Note that from equat1ons (11-4) and (II-5) it can be shown 1nduct1ve1y

all n > k-l.
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that
h w-i X .3 =2 .. th w'] Gu. <, oot hy l Gu
—n+1 n-i+1 —n-it+] N
Hence
k -1 - (§-1) - -
El:Z, a;(h v G$ﬁ”]+'“+hw G!%J)hj’Jin =0

all n > k-1,since E [unlzj, Jj <n]=o0. By smoothing property of

conditional expectation

{

all n > k-l.dletting j = i-1, n = m+]

a.(h \p-]

-(i-1) A
, G Gu .4 t..thy GE%J)hj,Jin] 0

U o

k=1 .
-1 _ .
all m> k-2, ’
Hence
N k-1 .
Ak--] .5n+]/n = g'l aiﬂ Zn'i_ﬂ’ all n > k-2
Inductively it follows that
~ k-j ‘ .
% Emn ” 'iZ A+j Zpeiere AT N2 -1,
where
k-j -
= 121 N Ay
j k ks
The Aje 1 <Jj < k, span the vectﬁr space S, and for any ¢S, i.e.,
k P | . o
A= .Z] h o™ byy Ar Ryqyn - ,_z] by 2, 547> N > k. Since hy S,
1= 1:

- n v 5 Un(n,on! thtn,on Y (2 h% ) ®
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Therefore for 2 < i <k, n > i-1

Zn-i+1 T Zn-i+l

- h w"(if])n(n,r)h'(hn(n,r)hl)#(zn' hia/m-1) -

‘Namely,

h w'(i'])n(n,r)h'(hH(n,r)h')#h‘E(én - =0,

5n/n-l)(én - 5n/n-1)h
or '

h w'(i'nn(n,l‘)h' =0,2<1i<k,n>i-1,allr.

Hence by theorems F - H and duality Aye C.

The following coro]]afy enables the immediate characterization

-

of filter directions which are fixed sums of past data.

k-1

" COROLLARY 0.1: If Y = 0, then

-j A

h v Xoel/n = Zneitls all n> 14, eachi, 1 s<si <k,

Proof: By Theorems N and 0.

In sum Theorems N and O state that,one-étep prediction in
constant directions merely corresponds to a finite length delay line with
constant tap gains. One-step prediction in nonconstant directions has

the usual dynamic feedback form with varying gains in general.

The results presented above are employed in the following

filtering example.

Example:
: T 1 1 0 1
X4l = 1 0 O X, t 0 -1 u,
o 1 0 1 0
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z, = [ 1 1y Zﬂ

It can be easily verified that Y2,= 0, hence there are three 1inear]y
independent constant directions which in this example means that the
riccati equation reaches equilibrium in three iterations. Calculation

establishes that

1 -1 0
P = -1 2 -1 ~for all n> 3, all r.
0 -1 3 \
and
“n
Xn+1/n Zn-1
Zn-2

-28-



CHAPTER VII

- DISCUSSION

The concept constant direction of the riccafi equation h_as
béen defined. It has been shown that as a consequence the dynamic
dimension of the riccati equation II-3 is less than d. An algorithm has
been presented which completely -characterizes the set of constant
direction for the cé.se s =1,

It is of interest to note that the daAta-differencing technique used
in [8] has a simple interpretation in terms of constant directions. For
the totally augmented state model the covariance function for pure

filtering

Pn/n = E(}n -i%n/n) (E '}n/n),

has singularities in the domain of the (s X d) observation operator H

where Zn = Hxn i.e., HP =0, all n= 0, But as the one-step pre-

n/n

dictor error covariance function P is related to P by
ntl/n n/n

4 ’
- r
I3n+1/n ‘I!Pn/nk[! + GG’ (see 4]), therefore

He 1P 'ac’ =y laa’  allnzo.

_ ‘ -
i n+1/n_HPn/n‘b + Hy
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That is, corresponding to the singularities of Pn/n in the domain of

H ‘are the constant directions Hlb_l of Pn/n-l , for all n2= 1, This

means that prior to any furthef analysis the dynarﬁic rank of the

riccati iteration for Pn/n-l is reduced by the dimension of the obser-

vatibns. In addition the dynamics of the one-step predictor estimate

equations are reduced by the same factor as
-1a N

Hep "x = Hx + HP H’'(HP H')#(Z - Hx
-1 n n n

nt+l/n n/n )= 2

n/n-1 n

alln=220

by the pseudo-inverse lemma of Kalman in the appendix of reference
{11]. Hence only the estimates for the remaining d directions need
be found by the usual estimate equations.

In conclusion,data-differencing 1"educes the computational com-
plexity of the oétimal system, however in general it does not give

maximum reduction,
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